Preliminary, not for citation

Prepared for Asian Historical Economics Conference Beijing, May 19-21, 2010

DECOMPOSITION OF INCOME GAPS BETWEEN CHINA, JAPAN AND THE UNITED STATES FOR *CIRCA* 1935 BY A PRODUCTION PPP APPROACH

Kyoji Fukao Institute of Economic Research, Hitotsubashi University

Harry X. Wu Institute of Economic Research, Hitotsubashi University

> Tangjun Yuan School of Economics, Fudan University

Second Draft (incomplete), May 2010

ABSTRACT

Income gaps between countries can be decomposed into three effects, namely, a labour participation effect that is determined by demographic structure of population and working hours per person employed, an industry-specific productivity effect, and an industrial structure effect. Due to its "industry-of-origin" nature, the productionside purchasing power parity (PPP) approach is ideal to address the research problem because it enables not only the conversion of national income and labour productivity into a common *numéraire* but also the decomposition of income gaps between nations into the three major effects. In this study we first construct the production-side PPPs for major sectors (agriculture, manufacturing-mining, transportation-utilities, tradefinance services and government) in China and Japan with the US as the reference country for circa 1935. We then decompose the income gaps between these countries. Our preliminary decomposition results show that the income gap between Japan and the US and between China and the US is mainly (near or over 90%) attributed to much lower industry-specific productivity rather than differences in industrial structures. We have also found that higher labour participation rate in China and in Japan helped narrow down their income gaps with that of the US by about 15% and 30%, respectively.

Key Words: Production-side purchasing power parities (PPPs), comparative income level and labour productivity, decomposition of income gaps, economic development

JEL References: L60, O47, P52

1. INTRODUCTION

Income gaps between nations and their dynamics have motivated a persistent intellectual inquiry and scholarly work about the causes and the determinants of wealth and poverty of nations since Adam Smith.¹ Attention has been particularly paid to large countries that have shaped the world economy at different times of the human history, for example, comparative studies for prewar or postwar periods on major industrialized countries by Maddison (1987), on UK, US and Germany by Broadberry (1998), on China by Maddison (1998), Wu (2001), and Maddison and Wu (2008), on Germany, Japan and US by van Ark and Pilat (1993), on Japan and Korea by Pilat (1994), and on major East Asian economies by Fukao, Ma and Yuan (2007) and Yuan, Fukao and Wu (2010).

Indisputably, countries have widely different institutions, traditions and policies, which have a powerful impact on the operation of atomistic market forces (Maddison, 2007). It would be superficial to believe that quantifiable "causes" or "explanations" can tell the whole story about why some countries are so rich and some so poor, and why some have caught up so quickly and some have fallen behind, but they are surely indispensable for a better understanding of deeper layers of causalities. This is especially true for understanding the driving forces behind the early industrialization in Japan and China in which their impressive postwar growth took root. However, there has been a lack of quantitative measures that could "explain" their income gaps with the world frontier.

Because of the well-known Balassa-Samuelson effect (Balassa, 1964; Samuelson, 1964) that market exchange rate-based international comparison underestimates (exaggerates) the real income of poor (rich) countries where non-tradables are cheaper (more expensive) than what suggested by market exchange rates, a direct measure of producer costs in national currencies for the same product or service between countries, or production-side purchasing power parity (PPP) approach, is more sensible and appropriate in the international comparison of income, output and productivity (Maddison and van Ark, 1988; van Ark, 1993). However, most income measures for prewar international comparisons are based on the expenditure PPP

¹ For literature in this field of the last half century see Denison (1967); Kuznets (1971); Maddison (1970, 1983 and 2001); Abramovitz (1989 and 1990); North (1990); Kravis, Heston and Summers (1975 and 1982); Summers and Heston (1988 and 1991); Landes (1998).

approach (Kravis, Heston and Summers, 1975 and 1982; Maddison, 1995), which only compares income levels measured by final goods and services, hence unable to address the issue as what are the important and quantifiable elements in a measured income gap between nations.

If taking a production point of view, one can reasonably argue that there are mainly three measurable effects behind an income gap between two countries in comparison, namely, a *labour participation effect* that is determined by age and gender structures of population and working hours per person employed, an industry-specific *labour productivity effect*, and an *industrial structure effect*, all can be coherently derived from a rigorous "national accounts" type of framework. Basically, the deeper layer factors such as institutions, traditions and policies will have impacts on factor costs through physical or moral barriers to factor mobility, market integration and improvement of efficiency, hence affecting labour participation, factor productivity, and the allocation of resources. Due to its "industry-of-origin" nature, the production-side PPP approach is ideal to address this research problem because it enables the construction of productivity comparison between countries.

The focus of this study is to decompose income gaps between two major East Asian economies, China and Japan, and the United States for *circa* 1935, the most appropriate prewar period in terms of data availability and the influence of the war time policy. The choice of the time for this study is different from an earlier, pioneer work also using the production PPP approach by Pilat (1994) that focuses on 1939. Since by that time Japan already started a war with China and enacted a *National Mobilization Law* in 1938, it is inappropriate for an international comparison that aims to understand the fundamental forces of the economy over the long run.

The structure of the current study is organized as follows. Section 2 gives a brief literature review on PPP studies for major East Asian economies in the prewar period. Section 3 discusses main methodological issues in measuring production-side PPPs. Section 4 gives detailed accounts for data sources and handling. Sections 5 and 6 report and discuss, respectively, the estimates of sectoral production PPPs for China and Japan with the US as the base economy, and the comparative output and productivity in major sectors of these economies. Section 7 presents the methodology for the decomposition of income gaps between these countries into the effects of labour participation, labour productivity and industrial structure, and discusses the decomposition results. Finally, Section 8 concludes the study by highlighting unsolved problems with future research agendas.

2. A BRIEF REVIEW OF THE EARLIER STUDIES

There have been only a few income comparison studies on the prewar East Asian economies using the PPP framework except for some backward projections by Maddison (2001). Since the early 2000s, Fukao and his associates have begun to work on the construction of expenditure-side PPPs for Japan and its two prewar colonies, Korea and Taiwan, for 1935 (Yuan and Fukao, 2002; Fukao, Ma and Yuan, 2004 and 2006). Their studies led to a more comprehensive study for East Asia by including China in Fukao, Ma and Yuan (2007) in which expenditure PPPs are constructed for Japan/China, Japan/US and China/US for circa 1935.

However, the level of a country's real per capita GDP measured by expenditure PPPs is by nature merely a measure of a nation's welfare level relative to that of the benchmark country. It does not directly indicate the industrialization level of the country because it cannot provide industry-specific labour productivity and economic structure compared with those of the benchmark country. As such, the postwar rapid economic growth of the East Asian economies cannot be well understood without a proper measure of the prewar economic conditions in an internationally comparable framework. Therefore, there is a call for the use of the production PPP approach for the East Asian economies.

Yukizawa (1973) is perhaps the pioneer who follows Rostas (1948) using some physical quantity ratios to measure relative output and productivity between Japanese and US manufacturing industries for 1935-39. However, from the theoretical point of view the Rostasian approach is less reliable than the comparison of unit value or price ratios as well discussed in van Ark (1993). Another shortcoming of the Yukizawa's study is that, as a comment made by Pilat (1994, pp. 26-27), it is based on some census concept of value added and employment rather than on the basis of the standard national accounts concept of gross domestic product (GDP) and persons engaged or hours worked which is essential in inferring measured relative output and productivity to the economy as a whole.

A study by Pilat (1993) is the first one that follows the standard "industry-oforigin" approach to estimate Japan/US production-side PPPs for manufacturing industries in 1939. Manufacturing is the traditional focus of the production PPP-based comparative studies. Despite its importance in the earlier stages of development, the role of manufacturing cannot be fully understood without a good understanding of the conditions of the agricultural sector which provided the desired savings for the earlier development and the conditions of the service sector which served or facilitated the industrialization. Extended from his earlier studies on manufacturing, Pilat (1994) further constructs Japan/US production-side PPPs for the major sectors of the whole economy for 1939. However, the benchmark of Pilat's study is difficult to accept because by that time Japan already entered a war with China and enacted a National *Mobilization Law* in 1938. Thus, this benchmark is inappropriate for an international comparison that aims to understand the fundamental forces of the economy over the long run. For this purpose, and to match other prewar PPP studies, there is a need for production PPP-based income comparison for major East Asian economies for circa 1935.

In a earlier study (Fukao, Wu and Yuan, 2008), we made the first attempt using the production PPP approach to manufacturing output and labour productivity comparisons between China, Japan, Korea and the US for circa 1935. Compared with the manufacturing PPP estimates for Japan/US by Pilat (1993) using the same approach but focusing on 1939, our results suggest that the Japanese cost of manufacturing production relative to the US rose by 110 percent between 1935 and 1939 (see Fukao, Wu and Yuan, 2008, Table 4; Pilat, 1993, Table 2.5). Great differences are observed at industry level between the two studies. For example, the relative cost of chemical industry increased by 280 percent while the relative cost of steel industry rose by 64 percent over this period. These findings well justify the need for PPP estimates for all major sectors of the economy for the mid 1930s, the best (and latest) prewar time that can better reflect the normal trend of these economies.

3. METHODOLOGY

In principle, we follow the standard method of constructing the "industry-of-origin" PPPs developed by the International Comparison of Output and Production Program (ICOP) at the Groningen Growth and Development Centre (GGDC) led by Angus Maddison (see Maddison and van Ark, 1988) and its recent practices especially in

prewar output and productivity comparisons including an UK/US comparison by de Jong and Woltjer (2007) and two UK/Germany comparisons by Broadberry and Burhop (2007) and by Fremdling, de Jong and Timmer (2007), all for 1935/36.

In this study we follow the standard ICOP "industry-of-origin" approach to compare producer prices between countries. The producer price is in principle unit value (UV) as it is derived from the value and quantity of a specific product or a specific service transaction. A unit value ratio (UVR) can be obtained by a direct comparison of the unit prices of the same product between two countries. With UVRs, production PPPs at sector level (i.e. one-digit industry) between two countries can be derived through weighting and aggregating from the basic level of industries (3 or 4-digit industry) to the level of industrial branches (2-digit industry), and then to the level of sectors.² Quantity weights at different levels of an industry are important for aggregating to an upper level of the industry.

More on UVRs in comparison with input-output table based double deflation approach...

Let us denote the benchmark or reference country as country B and set the price level of country B to 1 and denote any country that is in comparison with country B as country Z. We use Fischer geometric mean index for the international comparison of price levels. Following a similar approach used in Inklaa and Timmer (2008), we define the following PPPs for our analysis.³

Sectoral PPP for outputs

The output PPP for sector *I* in country *Z* that is to be compared with the benchmark country *B*, or $PPP_{I}^{Q(Z)}$, is defined by

(1)
$$PPP_{I}^{Q(Z)} = \sqrt{\sum_{i \in I} v_{i,I}^{Q(B)} p_{i}^{Q(Z)} \frac{1}{\sum_{i \in I} v_{i,I}^{Q(Z)} \frac{1}{p_{i}^{Q(Z)}}}$$

² In the "industry-of-origin" approach, a distinction is made between UVRs and PPPs. UVRs refer to product or service level price information and PPPs refer to price levels at more aggregated levels (industry, sector and the whole economy).

 $^{^{3}}$ For a simple, single deflation approach to the production-side PPP see Fukao, Wu and Yuan (2008).

where *I* denotes the set of output of sector *I* and $v_{i,I}^{Q(Z)}$ and $v_{i,I}^{Q(B)}$ denote the share of output *i* in total nominal output of sector *I* in country *Z* and *B*; $p_i^{Q(Z)}$ denotes the price level of output *i* in country *Z* in the base country currency, note that $p_i^{Q(Z)}$ is on a market price basis and includes indirect tax minus subsidies. We use the average market exchange rate in 1934-36 for the conversion of absolute price levels.⁴

Sectoral PPP for value added (double deflation)

Laspeyres price index (*PL*) for value added of sector *I* in country *Z*, $PL_I^{V(Z)}$, is defined by

(2)
$$PL_{I}^{V(Z)} = \frac{\sum_{i \in I} v_{i,I}^{Q(B)} \left(p_{i}^{Q(Z)} - \sum_{s \in S} v_{s,i}^{M(B)} p_{s}^{Q(Z)} \right)}{1 - \sum_{i \in I} \sum_{s \in S} v_{i,I}^{Q(B)} v_{s,i}^{M(B)}}$$

where $v_{s,i}^{M(B)}$ denotes the share of intermediate input *s* in total nominal output of *i* in the benchmark country *B* and $p_s^{Q(Z)}$ denotes price level of intermediate input *s* in country *Z* and $p_s^{Q(Z)}$ is on a market price basis and includes indirect tax minus subsidies. The upper case *S* denotes the set of all the commodities and services in the economy.

Paasche price index (*PP*) for value added of sector *I* of country *Z*, $PP_I^{V(Z)}$ is defined by

(3)
$$PP_{I}^{V(B)} = \frac{1}{\left(\frac{\sum_{i \in I} v_{i,I}^{Q(Z)} \left(\frac{1}{p_{i}^{Q(Z)}} - \sum_{s \in S} v_{s,i}^{M(Z)} \frac{1}{p_{s}^{Q(Z)}}\right)}{1 - \sum_{i \in I} \sum_{s \in S} v_{i,I}^{Q(Z)} v_{s,i}^{M(Z)}}\right)}$$

where $v_{s,i}^{M(Z)}$ denotes the share of intermediate input *s* in the nominal output of *i* in country *Z*.

Finally, PPP for the value added of sector I in country Z, $PPP_I^{V(Z)}$, is defined by

⁴ We can also try "aggregation with integration" approach of Inklaar and Timmer (2008), in which sectoral output used in the same sector is excluded from the calculation of $v_{i,I}^{Q(Z)}$ and $v_{i,I}^{Q(B)}$.

(4)
$$PPP_{I}^{V(Z)} = \sqrt{PL_{I}^{V(Z)} \cdot PP_{I}^{V(B)}}$$

Macro-level PPP for final outputs

When we measure macro-level PPP for outputs, we use the "aggregation with integration" approach as in Inklaar and Timmer (2008), in which output used in the same economy is excluded from the calculation of macro-level output. In order to simplify our analysis, we assume that effects of imports on PPP are negligible. Then, the macro-level PPP for *final* outputs of country *Z*, $PPP_s^{Q(Z)}$ is defined by

(5)
$$PPP_{S}^{Q(Z)} = \sqrt{\sum_{i \in S} v_{i,S}^{F(B)} p_{i}^{Q(Z)} \frac{1}{\sum_{i \in S} v_{i,S}^{F(Z)} \frac{1}{p_{i}^{Q(Z)}}}$$

where $v_{i,S}^{F(Z)}$ and $v_{i,S}^{F(B)}$ denote the share of final output *i* in the total final output of country *Z* and of *B*, respectively.

We can also define the macro-level PPP for value added, $PPP_{S}^{V(Z)}$ by the following modified version of equations (2), (3) and (4):

(2')
$$PL_{S}^{V(Z)} = \frac{\sum_{i \in S} v_{i,S}^{Q(B)} \left(p_{i}^{Q(Z)} - \sum_{s \in S} v_{s,i}^{M(B)} p_{s}^{Q(Z)} \right)}{1 - \sum_{i \in S} \sum_{s \in S} v_{i,S}^{Q(B)} v_{s,i}^{M(B)}}$$

(3')
$$PP_{S}^{V(B)} = \frac{1}{\left(\frac{\sum_{i \in S} v_{i,S}^{Q(Z)} \left(\frac{1}{p_{i}^{Q(Z)}} - \sum_{s \in S} v_{s,i}^{M(Z)} \frac{1}{p_{s}^{Q(Z)}}\right)}{1 - \sum_{i \in S} \sum_{s \in S} v_{i,S}^{Q(Z)} v_{s,i}^{M(Z)}}\right)}$$

(4')
$$PPP_{S}^{V(Z)} = \sqrt{PL_{S}^{V(Z)} \cdot PP_{S}^{V(B)}}$$

Using the following relationships,

(6)
$$v_{i,S}^{F(K)} = \frac{v_{i,S}^{Q(K)} - \sum_{s \in S} v_{s,S}^{Q(K)} v_{i,s}^{M(K)}}{1 - \sum_{i \in S} \sum_{s \in S} v_{i,S}^{Q(B)} v_{s,i}^{M(B)}}, \quad for \sum_{i \in S} v_{i,S}^{Q(K)} = 1, \quad K = Z, B$$

we can show that the macro-level PPP for final outputs, $PPP_{S}^{Q(Z)}$ is equal to the macro-level PPP for value added, $PPP_{S}^{V(Z)}$.

So far we have not explicitly taken into account the price gaps between domestically produced goods and services and imported goods and services. In Appendix 1, we will use a schematic input-output table to deal with this issue as well as the consistency problem between the production-side and expenditure-side PPPs.

4. DATA SOURCES AND PROBLEMS

In this section, we concentrate mainly on the data that are used in constructing PPPs, including sources, coverage and definition, industrial and sectoral classification, and their problems and how we deal with the problems. Sources and indicative notes are provided with tables. More details of sources, technical notes and handling are provided in Appendix 2. Matching tables for calculating product, industry and sector level PPPs in the case of China/Japan are given in Appendix 3.

International comparison of income and productivity requires micro (product and itemized service transaction) level data, which in our case do not exist or were not collected systematically. Among the East Asian economies, the most consistent and reliable long-term GDP series going back to the late-19th century are available only for Japan, thanks to the efforts of the Long-Term Economic Statistics (LTES) project under the leadership of Kazushi Ohkawa at the Institute of Economic Research (IER) of Hitotsubashi University, Japan, resulting in an extensive publication of 14 volumes for the Japanese economy (1974) in Japanese.⁵ The IER group also extended this line of research to two former Japanese colonies, Taiwan and Korea, with the 1988 publication of a statistical volume compiled by Mizoguchi and Umemura. The volume provides annual estimates of GDP and its various components for these two economies during the period of Japanese occupation based on detailed economic statistics by the colonial administrations. (More details on Japanese micro data for estimating PPPs are in Appendix 2.)

There are two main sources for the Chinese data. The first one was China's first national income account constructed by Ou Pao-san during 1941-46, which resulted in

⁵ This is accompanied by an abridged English version by Ohkawa and Shinohara in 1979.

a two-volume publication in Chinese in 1947 (Ou, 1947).⁶ The work concentrated mainly on 1933, reflecting the detailed survey data for that year which were compiled by D.K. Lieu for the same period in 1937 (see NRC, 1937). Since Ou's work basically followed the western concepts of national income, its industrial classification is acceptable. The second source was the work jointly done by two US-based Chinese economists Liu Ta-chung and Yeh Kung-chia (1965)⁷, which subsequently revised Ou's work. Liu-Yeh's revised estimates raised China's GDP for 1933 by 37 percent, that is, from Ou's 21.77 billion yuan to 29.88 billion yuan at 1933 prices (p.66). The differences between Liu-Yeh and Ou appear to be mainly in agriculture, factory manufacturing and handicrafts. They are basically empirical rather than conceptual differences. (More details on the Chinese micro data are given in Appendix 2.)

More to follow...

- The US data and problems.
- Input-output table used for double deflation ... (Wassilly Leontief, 1966)
- ...

5. ESTIMATED PRODUCTION-SIDE PPPS

The bilateral PPP results for China/US and Japan/US in Table 1 are obtained by unit value comparisons to derive UVRs, then by taking aggregation procedures through industries, branches to sectors to derive inter-country cross-weighted PPPs at different levels, and finally by calculating the Fisher average PPPs.

In the case of China/Japan comparison we have made 89 product comparisons for manufacturing industries, 30 in agriculture, 14 in mining, 15 in construction including two pieces of information on wage rates, 3 in public utilities, and 5 in finance and trade services.

In the case of Japan/US comparison we have made 99 comparisons in manufacturing, 26 in agriculture, 12 in mining, 15 in construction, 4 in public utilities and 7 in finance and trade services.

⁶ See an English-language summary of the work published in the *Journal of Political Economy* (Ou, 1946).

⁷ Estimates in Yeh (1977) are basically the same as those in Liu and Yeh (1965). However, Yeh provides a time series for 1931-36, of which the data for 1935 are used in this study.

	Chir	a/US	Japa	ın/US	
	PPP Yuan/\$ (Fisher) ¹	Relative Price level ²	PPP Yen/\$ (Fisher) ¹	Relative Price level ²	
Agriculture ³	1.323	0.439	2.396	0.700	
Construction ⁴	0.909	0.302	2.687	0.786	
Manufacturing & Mining	1.947	0.647	1.810	0.529	
- Mining	2.834	0.941	3.657	1.069	
- Manufacturing	1.910	0.634	1.744	0.510	
Transportation & Public Utilities	0.981	0.326	2.118	0.619	
Finance, Trade & Other Services	0.957	0.318	1.650	0.482	
- Trade	0.909	0.302	2.687	0.786	
- Finance, Insurance, Real Estate	1.275	0.424	1.881	0.550	
- Other Services	0.392	0.130	0.879	0.257	
Total Market Economy ⁵	1.387	0.461	1.898	0.555	

TABLE 1 SUMMARY OF ESTIMATED PPPs FOR GROSS OUTPUT BY SECTOR, CHINA/US AND JAPAN/US, CIRCA 1935 (Single Deflation Based on Unit Value Batios)

Source: Authors' estimation. See Appendix for deta *Notes*:

1) Fisher PPP is a geometric mean of Laspeyres and Paasche PPPs (see Eq. 4 for industry PPPs) which are based on output unit values.

 Measured as estimated PPP compared with market exchange rate. MER=3.01 for Chinese yuan/US\$ and MER=3.42 for Japanese yen/US\$ for 1935.

3) Including farming, forestry and fisheries.

4) Relative price level is estimated based on rental prices.

5) Excluding government services.

Our effort in the basic matching exercise represents a distinct progress from the first study on Japan/US by Pilat for 1939 using a similar production PPP approach in which only 20 matchings were made in agriculture, 6 in mining and 48 in manufacturing, but no details available for the matching for services (1994, pp. 22-24).

The results are very much in line with the Balassa-Samuelson hypothesis with relatively low prices (producer costs) found in non-tradables or services and relatively high prices in tradables in comparison with the prevailing exchange rates. (More details to be discussed ...)

Next, to prepare for double-deflation PPPs we use the input-output table weights for intermediate inputs to adjust the PPP results reported in Table 1 to obtain PPPs for intermediate inputs by sector which are reported in Table 2. The results fall into a rather narrow range, basically aligned with output PPP estimates, suggesting a fairly rational producer behaviour in choosing the least-cost combination of inputs under the given constraints in the factor markets especially in China and Japan.

China/U	CHINA/US AND JAPAN/US, <i>CIRCA</i> 1935							
(Based o	n Input-Output	Table Weights)						
	Chii	na/US	Japa	an/US				
	PPP	Relative	PPP	Relative				
	Yuan/\$	Price level ²	Yen/\$	Price level ²				
	(Fisher) ¹	(MER=3.01)	(Fisher) ¹	(MER=3.42)				
Agriculture ³	1.341	0.446	1.937	0.566				
Construction ⁴	1.765	0.586	1.836	0.537				
Manufacturing & Mining	1.535	0.510	1.919	0.561				
Transportation & Public Utilities	1.514	0.503	1.989	0.582				
Finance, Trade & Other Services	1.374	0.456	1.909	0.558				

 TABLE 2

 SUMMARY OF ESTIMATED PPPs FOR INTERMEDIATE INPUTS BY SECTOR, CHINA/US AND JAPAN/US, CIRCA 1935

 (Based on Input Output Table Weights)

Source: Authors' estimation. See Appendix for details.

Notes: 1-4 see Table 1.

The PPP results in Tables 1 and 2 help us produce the PPP estimates for value added using a double deflation approach that is similar to Fremdling, de Jong and Timmer (2007). The value added PPP estimates are reported in Table 3. In the case of Japan, our result is 1.84 yen per dollar for circa 1935 compared with 2.34 yen per dollar as estimated by Pilat for 1939. However, compared with the prevailing market exchange rates, the price level of the Japanese economy was 54 percent of the US level, which is very close to 60 percent based on Pilat's results (1994, Table 2.3). If the similarity is not a coincidence since we cannot rule out the effect of likely biases caused by data problems in either study, it may suggest that the relative industrial structure between Japan and the US remained largely unchanged, which means the relative effect of tradables and non-tradables on prices and exchange rates between the two countries also remained largely unchanged.

Relative price rises over the period 1935-39, as suggested by our PPP estimates for 1935 compared those by Pilat for 1939, mainly appeared in natural resource-based industries, that is, agriculture, mining and construction. They ranged from 50 percent (construction) to 150 percent (agriculture and mining). In the case of transportation, utilities and services, the two estimates suggest relative price declines over this period from 10 percent (transportation, utilities) to 20 percent (finance and other services), which may be difficult to accept. However, one has to bear in mind that by 1939 Japan already started a war with China and entered a war-time economy following a law for mobilizing national resources enacted in 1938. Since these industries include all state-controlled utilities and non-market services, the decline may not be a pure statistical artifact. On the other hand, as already mentioned Pilat worked on much less information than us because he only relied on the *Historical Statistics of Japan* (Ref...), whereas we have made use of more other materials (Ref...). This means that his estimates rely on more aggregated price information than what available in the current study.

	Chi	na/US	Japa	an/US
-	PPP	Relative	PPP	Relative
	Yuan/\$	Price level ²	Yen/\$	Price level ²
	(Fisher) ¹	(MER=3.01)	(Fisher) ¹	(MER=3.42)
Agriculture ³	1.070	0.355	2.075	0.607
Construction ⁴	0.909	0.302	2.687	0.786
Manufacturing & Mining	4.065	1.351	1.752	0.512
Transportation & Public Utilities	0.876	0.291	2.257	0.660
Finance, Trade & Other Services	0.856	0.284	1.531	0.448
Market Economy Only (Production PPP) ⁵	1.245	0.414	1.842	0.539

TABLE 3
SUMMARY OF ESTIMATED PPPs FOR VALUE ADDED BY SECTOR,
CHINA/US AND JAPAN/US, CIRCA 1935

Source: Authors' estimation. See Appendix Table A..... detail

Notes: 1-4 see Table 1.

5) Excluding government services.

6) Including government services (Fukao, Ma and Yuan, 2007).

6. COMPARATIVE PRODUCTIVITY BY MAJOR SECTOR

As argued in Yuan, Fukao and Wu (2010), it makes a great sense to measure comparative labour productivity in hours worked rather than numbers employed. While we are reporting our preliminary results on the conversion from numbers employed to hours worked for all the three countries later in this section, after a long, painstaking process, we first report our basic data for a straightforward measure of labour productivity and its PPP-based comparative measure.

Tables 4 and 5 are our basic data used to calculate the simple, market exchange rate (MER) converted labour productivity for major sectors of the economy, reported in Table 6. Using the estimated PPPs in Tables 1 and 2, we can have PPP-based comparative labour productivity in Table 7.

	(Thousa	nd Persons)				
	Nı	umbers (x0	(00	Sectoral Share [*] (%)			
	China	Japan	US	China	Japan	US	
Population	528,000	69,254	127,250	100.0	100.0	100.0	
Employment	227,326	30,969	42,388	43.1	44.7	33.3	
Market Economy:	225,174	29,916	37,387	42.6	43.2	29.4	
- Agriculture	193,300	14,403	8,651	85.8	48.1	23.1	
- Construction	1,841	997	1,514	0.8	3.3	4.0	
- Manufacturing & Mining	9,797	5,577	9,859	4.4	18.6	26.4	
- Transportation & Public Utilities	4,565	1,317	2,908	2.0	4.4	7.8	
- Finance, Trade & Other Services	15,671	7,622	14,455	7.0	25.5	38.7	
General Government	2,152	1,053	5,001	0.4	1.5	3.9	

TABLE 4
POPULATION AND EMPLOYMENT IN CHINA, JAPAN AND THE US BY SECTOR, CIRCA 1935
(Thousand Demons)

Source:

Note: *Sectoral shares for market economy are calculated taking "market economy = 1".

TABLE 5 GDP MEASURED BY MARKET EXCHANGE RATES IN CHINA, JAPAN AND THE US CIRCA 1935 BY SECTOR

	GDP^*	(Millions of	Sectoral Share (%)			
	China	Japan	US	China	Japan	US
Total GDP	9,246	4,391	59,600	100.0	100.0	100.0
Market Economy:	8,973	4,227	52,800	97.1	96.3	88.6
- Agriculture	6,233	836	6,700	67.4	19.0	11.2
- Construction	113	134	1,300	1.2	3.1	2.2
- Manufacturing & Mining	960	1,175	14,500	10.4	26.8	24.3
- Transportation & Public Utilities	585	444	7,500	6.3	10.1	12.6
- Finance, Trade & Other Services	1,083	1,638	22,800	11.7	37.3	38.3
General Government	272	164	6,800	2.9	3.7	11.4

Source: Note: * The GDP figures are slightly different from those used in our previous study. The discrepancies are due to estimation and adjustment for "government". (Ref.)

TABLE 6
ABSOLUTE AND RELATIVE LABOUR PRODUCTIVITY MEASURED IN CHINA, JAPAN AND THE
US, CIRCA 1935 BY SECTOR
(In MER\$)

	С	hina	Ja	ipan	US
	Labour productivity (in MER\$)	Labour productivity (US=1)	Labour productivity (in MER\$)	Labour productivity (US=1)	Labour productivity
Total Economy	41	0.029	142	0.101	1,406
Agriculture	32	0.042	58	0.075	774
Construction	61	0.071	134	0.156	859
Manufacturing & Mining	98	0.067	211	0.143	1,471
Transportation & Public Utilities	128	0.050	337	0.131	2,579
Finance, Trade & Other Services	69	0.044	215	0.136	1,577
Market Economy	40	0.028	141	0.100	1,412
General Government	127	0.093	156	0.115	1,360

Source: Note:

The comparison in labour productivity in MER and PPP is to show how the cross-industry labour productivity pattern has changed when the PPP-measured producer costs are taken into account to confirm that out results are consistent with the Balassa-Samuelson effect.

Figure 1 presents a productivity comparison between the results in MER and the results in single deflated PPP. As it shows, after converted to PPPs (single deflated), labour productivity of all sectors in China and Japan has narrowed down its gap with the US counterpart, the lower the factor cost in these countries compared with that of the US, the larger the extent to which the productivity gap has been reduced. In the case of Japan, this PPP effect is especially seen in finance-trade and manufacturing, all upward adjusted by nearly or over 100 percent from the level measured in MER; whereas in the case of China, this PPP effect is seen in construction, finance-trade and transportation in particular, all upward adjusted by more than two times. The least affected sector was construction and agriculture in Japan and manufacturing in China (more on this...).

This comparison also shows that taking into account the real producer costs, one can see that Chinese agricultural sector back to the mid 1930s was similarly productive as her Japanese counterpart and Chinese construction industry was even more productive than her Japanese counterpart.

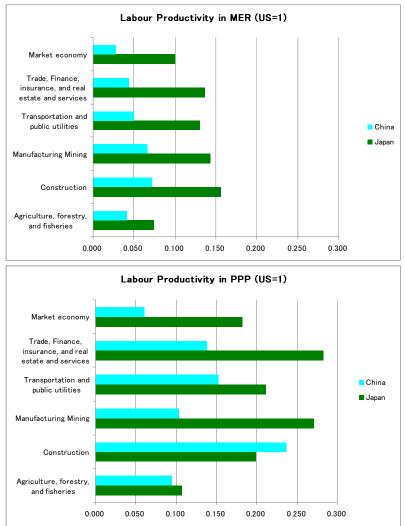


FIGURE 1 COMPARISON OF LABOUR PRODUCTIVITY IN MER AND PPP MEASURES BY SECTOR, CHINA AND JAPAN VERSUS THE US

Source: Table 6 and 7.

Note: PPPs used in this chart are by single deflation approach.

There are two panels in Table 7, with one presenting labour productivity in PPP\$ by the single deflation approach and the other one by the double deflation approach. In the case of labour productivity at macro-level, our result shows that Japan's labour productivity (adjusted by gross output PPP) is 23% of the US. Pilat gets 19% for 1929 and 27% for 1939 (1994, Table 2.6). So taking a mid point of this period, his result should be very close to 23%. In this sense, our results are quite consistent with Pilat's, even though there is huge gap in the case of construction sector, and some other strange results in Pilat's study. (More on this...)

	C	hina	Ja	apan	US
	Labour productivity (in PPP\$)	Labour productivity (US=1)	Labour productivity (in PPP\$)	Labour productivity (US=1)	Labour productivity
		(A) In PF	PP\$ by Single D	eflation	
Total Economy	144	0.102	321	0.228	1,406
Agriculture	73	0.095	83	0.107	774
Construction	203	0.237	171	0.199	859
Manufacturing & Mining	152	0.103	398	0.271	1,471
Transportation & Public Utilities	393	0.152	544	0.211	2,579
Finance, Trade & Other Services	217	0.138	446	0.282	1,577
Market Economy	86	0.061	257	0.182	1,412
General Government	1,360	1.000	1,360	1.000	1,360
		(B) In PP	P\$ by Double I	Deflation	
Total Economy	156	0.111	326	0.232	1,406
Agriculture	91	0.117	96	0.123	774
Construction	203	0.237	171	0.199	859
Manufacturing & Mining	73	0.049	411	0.280	1,471
Transportation & Public Utilities	440	0.171	511	0.198	2,579
Finance, Trade & Other Services	243	0.154	480	0.304	1,577
Market Economy	96	0.068	262	0.186	1,412
General Government	1,360	1.000	1360	1.000	1,360

 TABLE 7

 ABSOLUTE AND RELATIVE LABOUR PRODUCTIVITY MEASURED IN PPPS FOR CHINA, JAPAN AND THE US CIRCA 1935 BY SECTOR

Source: *Note*:

In Yuan, Fukao and Wu (2010), we documented in details the sources and procedures in converting numbers employed to hours worked in manufacturing for these countries. In this study, we mainly concentrate on the sources and handling of the data used for the conversion. The Japanese data are from Japanese Empire Statistical Yearbook published by the Cabinet Bureau of Statistics (yyyy) and Materials of Japanese Labor Movement History, Vol. 10, published by its editorial committee (yyyy), numbers employed grouped by daily hours worked, available for mining, manufacturing, construction, utilities (gas, water and electricity), transportation and telecommunication-post service in systematic surveys. The US data are from Historical Statistics of the United States, millennial edition, Vol.2, "Work and Welfare" (Table Ba4576-4588), annual hours worked per person, available for mining, manufacturing, transportation-utilities, trade, finance-insurance-real estate, and (other) services. The Chinese data are from China Labor Annals published by Ministry of Industry (1932), data available as occasional or piecemeal surveys for mining, utilities, transportation, post service and personal services.

Our general principles in data handling and estimation are given as follows. Details of the nature of the data and data work are given in Appendix 2. Different from the case of Japan and the US in which reported data can be used straightway, the Chinese data are less systematic and largely unprocessed. Daily hours worked, occasionally together with annual leave or off-duty days, are reported for a specific industry at a location. The number of daily hours worked ranges from 8 to 12 hours in most cases. In the case without annual leave days, we assume that a person would work for 51 weeks if the number of his/her daily hours worked was 11 or less, and 50 weeks if it was more than 11.

For mining, the Chinese and US data refer mainly to coal mining industry, whereas the Japanese data cover coal, metal and non-metallic mining and oil extraction. For utilities, the Japanese and US data are more comprehensive than their Chinese counterpart which concentrates mainly on electricity. The case of transportation is similar in that the Japanese and US data are more comprehensive than the Chinese data which only cover two companies, one in bus service in Beijing and the other in railway service in Shandong. There are no data for construction in the case of China and the US. We assume the number of annual hours worked in construction in these countries is equal to that of utilities. For the number of annual hours worked in government services, we assume that it is equal to that of post office in the case of China and Japan. As for the US, we assume that it is equal to that of financial services. There are no data for trade industry in the case of China and Japan. Our estimation is based on the "relationship" between trade and transportation as in the case of the US. Annual hours worked of all other services are assumed to be equal to those of national average excluding government. Annual hours worked in agriculture in all cases are assumed to be equal to 75 percent of the national average, i.e. assuming a three-month idle season. The results are reported in Table 8.

TABLE 8
NUMBERS EMPLOYED, HOURS WORKED AND ANNUAL HOURS WORKED PER PERSON BY MAJOR SECTOR, CHINA, JAPAN AND THE US, CA 1935

	China				Japan			US		
	Numbers employed (thousands)	Hours worked (millions)	Annual hours per person	Numbers employed (thousands)	Hours worked (millions)	Annual hours per person	Numbers employed (thousands)	Hours worked (millions)	Annual hours per person	
Total Economy	227,326	517,530	2,277	30,969	82,927	2,678	42,388	75,320	1,777	
Agriculture	193,300	421,982	2,183	14,403	33,415	2,320	8,651	12,308	1,423	
Construction	1,841	5,869	3,188	997	3,259	3,267	1,514	3,111	2,055	
Manufacturing & mining	9,797	28,369	2,896	5,577	17,418	3,123	9,859	17,118	1,736	
Transportation & utilities	4,565	13,538	2,966	1,317	4,145	3,147	2,908	6,354	2,185	
Finance, trade & other services	15,671	42,504	2,712	7,622	21,948	2,880	14,455	26,952	1,865	
Government	2,152	5,268	2,448	1,053	2,742	2,604	5,001	9,477	1,895	

Sources: See text and appendix for details of the data used in the estimation.

TABLE 9

COMPARATIVE LABOR PRODUCTIVITY, PPP\$ PER HOUR WORKED.

Table 9							
Total Economy	China		Output/Num	Japan		Output/Num	US
	Output/Hour	US=1	US=1	Output/Hour	US=1	US=1	
Agriculture	0.042	0.077	0.117	0.041	0.076	0.123	0.544
Manufacturing & Mining	0.025	0.030	0.049	0.132	0.155	0.280	0.847
Construction	0.064	0.152	0.237	0.052	0.125	0.199	0.418
Transportation & Public Utili	0.148	0.126	0.171	0.162	0.138	0.198	1.180
Finance, Trade & Other Ser	0.090	0.106	0.154	0.167	0.197	0.304	0.846
Market Economy	0.042	0.053	0.068	0.098	0.122	0.186	0.802
General Government	0.556	0.774		0.522	0.728		0.718

Sources: See text.

7. DECOMPOSITION OF INCOME GAPS

Decomposition of income gaps between countries

As we have argued, just like a meaningful international comparison in income, a meaningful examination of income gaps between countries requires PPP measures of income across the countries involved. Now, with the estimated PPP results for China, Japan and the US, we can not only measure but also decompose income gaps among these countries.

Let us begin with an income gap decomposition exercise. As given by the equation below, the logarithmic value of the ratio of per-capita GDP (y) of country Z over the benchmark country B can be decomposed into the following factor:

(7)
$$\ln\left(\frac{y^{(Z)}}{y^{(B)}}\right) = \ln\left(\frac{\frac{L^{(Z)}}{N^{(Z)}}}{\frac{L^{(B)}}{N^{(B)}}}\right) + \ln\left(\frac{\sum_{n=1}^{n}\theta_{n}^{(Z)}a_{n}^{(Z)}}{\sum_{n=1}^{n}\theta_{n}^{(B)}a_{n}^{(B)}}\right)$$
$$= \ln\left(\frac{\frac{L^{(Z)}}{N^{(Z)}}}{\frac{L^{(B)}}{N^{(B)}}}\right) + \ln\left(\frac{\sum_{n=1}^{n}\theta_{n}^{(B)}a_{n}^{(Z)}}{\sum_{n=1}^{n}\theta_{n}^{(B)}a_{n}^{(Z)}}\right) + \ln\left(\frac{\sum_{n=1}^{n}\theta_{n}^{(B)}a_{n}^{(Z)}}{\sum_{n=1}^{n}\theta_{n}^{(B)}a_{n}^{(B)}}\right)$$

where N^{Z} and L^{Z} denote the population and the number of workers (hours standardized) in country Z, θ_{n}^{Z} denotes the share of workers in industry *n* of the entire workers employed in country Z, a_{n}^{Z} denotes the labor productivity of industry *n* in country Z. Variables with subscript B denote the corresponding values for the benchmark country B. Equation (7) implies that we can decompose the difference of per-capita income of the two countries into three effects, namely, labor participation effect,⁸ industry-specific productivity effect and industrial structure effect. Country Z will become richer than country B if, *ceteris paribus*, it has a higher percentage of population working, it has a larger share of industries with a higher labor productivity, or for each industry it has a higher labor productivity.

The decomposition is applied to per capita GDP gaps measured in production PPPs as shown in Table 10. The table also reports per capita GDP gaps in other measures.

	U	JS IN 1935						
	F	Per Capita G	DP	Per Capita GDP Gap (log)				
	China	Japan	US	US/ China	US/ Japan	Japan/ China		
GDP in MER\$:								
Total	18	64	514	3.350	2.080	1.269		
Market Economy	17	61	415	3.195	1.917	1.278		
GDP in Production PPP\$:								
Total	39	116	514	2.575	1.491	1.084		
Market Economy	37	110	415	2.420	1.328	1.093		
GDP in Expenditure PPP\$:								
Total	56	143	514	2.211	1.282	0.929		
Market Economy			415					
Source:								

TABLE 10
PER CAPITA INCOME GAPS MEASURED BY MER AND PPPS BETWEEN CHINA, JAPAN AND THE
LIG pr 1025

Note:

Our preliminary results are reported in Table 11 which may not be as expected by theory, that is, we do find large errors especially in the case of Japan/China decomposition.

 TABLE 11

 DECOMPOSITION OF PER CAPITA GDP GAPS IN PPPS BETWEEN CHINA, JAPAN AND THE US, CIRCA 1935

	US/China	US/Japan	Japan/China
Difference in Per Capita GDP (log)	2.420	1.328	1.093
1) Labour Participation Effect	-0.373	-0.385	0.013
	(-15.4)	(-29.0)	(1.2)
2) Economic Structure Effect	0.559	0.277	0.632
	(23.1)	(20.8)	(57.9)
3) Industry-Level Productivity Effect	2.113	1.472	0.291
	(87.3)	(110.9)	(26.6)
4) Estimation Error	0.121	-0.036	0.156
	(5.0)	(-2.7)	(14.3)

⁸ Labor participation effect, L/N (L=r*A, r=labor participation rate); h (h=H/L, average working hours). Since A=working age population, there is also an age structure effect, holding gender effect constant (which can also be added in).

Source:

Note: Income gaps are in production PPPs and converted to logarithmic values. Figures in parentheses are contribution of individual effects in percentage.

It shows that in the case of the Japan-China comparison, the main cause of the per capita GDP gap is the difference in industrial structure (see Table 11). In both countries, labor productivity of agriculture (including forestry and fishery) is lowest among all the industries (Table 11). In the case of China, 86 percent of the workforce was working in agriculture and only 4 percent of the workforce was working in manufacturing and mining. Whereas in Japan, there was only 48 percent of the workforce was working in agriculture and 19 percent in manufacturing and mining. In fact, Japan's industrialization was partially accomplished though its specialization in manufacturing production which changed the world division of labor. In 1934-36, 88 percent of Japan's exports were manufactured goods and 59 percent of its imports were food stuffs and live animals (Table 3 of Fukao, Wu and Yuan 2008). However, in the case of China, 67 percent of its exports were primary products and exports and imports of food stuff and live animals were more or less balanced.

Japan's experience of accomplishing income increase through industrialization and accomplishing industrialization through international specialization has been well analyzed and there is no novelty around this. But when we compare producers' prices and purchasers' prices, which are reported in Fukao, Ma and Yuan (2006) by sector of China and Japan, we can find interesting differences.

Firstly, when we use production side PPPs, China's agricultural, fishery and forestry sector had relatively high productivity both in comparison with Japan's corresponding sector and in comparison with China's other sectors. When we compare labor productivity of two countries' agriculture, forestry and fishery sector using market exchange rate, then China's labor productivity level is 56% of Japan's level (Table 6). But most of this gap is caused by price difference of this sector's products between the two countries. As Table A1 shows, (producers') price level of this sector in China was 58% of Japan's corresponding price level in the case of Fisher average. In the case of grain, China's price level was 31% of Japan's level. Although welfare level of average farmers depends on not only labor productivity but also other factors, such as ownership structure of land and income distribution, it

seems that welfare level of farmers in China were not very low in comparison with farmers in Japan. This relatively good performance of China's primary sector might have hindered industrialization in China by slowing down migration of workers to cities.

Secondly, when we compare demand side PPPs, which are based on average prices in major cities, China's food price level was 72% of Japan's food price level in the case of Fisher average. In the case of grain, China's price level was 68% of Japan's level. Gaps in purchasers' prices are much smaller than gaps in producers' prices. Probably we can point out several factors behind this China-Japan difference, such as difference of country size, low labor productivity of China's trade and other service sector (Table 7), low labor productivity of China's food processing industry (Table 8, Fukao, Wu and Yuan 2008), and Japan's active imports of food. Relatively smaller gaps between producers' prices and purchasers' prices in Japan must have contributed to make PPP adjusted real wage rates in Japanese cities much higher than corresponding values in Chinese cities. According to Figure 5 of Allen et al. (2005), welfare ratios in Kyoto-Tokyo, which is measured by nominal wages over food basket price level, was more than two times higher than welfare ratios in Canton and Beijing. This relatively high real wages in Japan's cities must have contributed labor migration to cities.

As we have seen in Table 11, the macro-level productivity gap between the US and Japan is mainly caused by the differences in productivity at sector level. Labor productivity gap is especially large in agriculture. But in all the sectors, Japan's productivity level was less than one third of the US level. What caused this huge productivity gap? In addition to technology gap, capital intensity must have played an important role. Since real wage level in Japan was much lower than that in the US, firms had incentives to choose more labor intensive technology in Japan.

More in this section...

8. CONCLUDING REMARKS

To be followed... Please see PPT at the conference.

APPENDIX 1: CONSISTENCY BETWEEN THE PRODUCTION AND EXPENDITURE PPPS

23

Since we are dealing with the whole economy using the production PPP approach we face three methodological problems, all related to the consistency and coherence in a national account framework that systematically links production, income and expenditure.

- 1. All inputs and outputs, classified by product or service transaction, by industry and by sector, must be strictly coherent or integrated in an input-output framework for the whole economy of countries in comparison.
- 2. Under a closed economy assumption, the constructed PPPs for the final output of the whole economy must be the same as the PPPs for value added of the same economy, which ensures the consistency of the production-side PPPs with the expenditure-side PPPs.
- 3. However, when the coherence and integration is maintained, the difference between the production and the expenditure PPPs must reflect the terms of trade effect (Feenstra, Heston, Timmer and Deng, 2008), which should be consistent with the observed trade prices.

In Section 3, we did not explicitly take into account the price gaps between domestically produced goods and services and imported goods and services. We now use a schematic input-output table to deal with this issue and the consistency problem between the production-side and expenditure-side PPPs. Let us set up the following notations first: Q = gross output; V = value added; T = indirect tax minus subsidies; A = vectors in the use matrix, identified by the production of "goods (G)", "distribution services (D)" and "other services (S)" in subscripts; E = domestic expenditure; X = exports; M = imports; and P = (producers') prices. We assume a schematic input-output table in producers' prices for country Z, Table 0.a and structure of producers' prices in country Z (country B's price = 1), Table 0.b. To simplify our explanation, we assume that prices of goods and services do not depend on their use.

		Goods	Distribution services	Other services	Domestic expenditure	Exports	Gross output
	Goods	$A_{GG}(Z)$	$A_{GD}(Z)$	$A_{GS}(Z)$	$E_G(Z)$	$X_G(Z)$	$Q_G(Z)$
Domestic products	Distribution services	A _{DG} (Z)	$A_{DD}(Z)$	A _{DS} (Z)	$E_D(Z)$	$X_D(Z)$	<i>Q</i> _D (Ζ)
_	Other services	$A_{SG}(Z)$	$A_{SD}(Z)$	$A_{SS}(Z)$	$E_S^{D}(Z)$	$X_{S}(Z)$	$Q_{S}(Z)$
	Goods	$A_{GG}^{M}(Z)$	$A_{GD}^{M}(Z)$	$A_{GS}^{M}(Z)$	$E_G^M(Z)$		_
Imported products	Distribution services	$A_{DG}^{M}(Z)$	$A_{DD}^{M}(Z)$	$A_{DS}^{M}(Z)$	$E_G^M(Z)$		
	Other services	$A_{SG}^{M}(Z)$	$A_{SD}^{M}(Z)$	$A_{SS}^{M}(Z)$	$E_G^M(Z)$		
	Value added	$V_G(X)$	$V_D(Z)$	$V_S(Z)$			
	Indirect tax minus subsidies	$T_G(Z)$	$T_D(Z)$	$T_S(Z)$			
	Gross output	$Q_G(Z)$	$Q_D(Z)$	$Q_{S}(Z)$			

Table 0.a. Schematic Input-Output Table in Producers' Price for Country Z

Table 0.b. Structure of Producers' Prices in Country Z (Country B's price = 1)

		Producers' Prices in Country Z (Country B's price = 1)
	Goods	$P_G(Z)$
Domestic products	Distribution services	$P_D(Z)$
	Other services	$P_{S}(Z)$
	Goods	$P_{G}^{M}(Z)$
Imported products	Distribution services	$P_D^M(Z)$
	Other services	$P_S^M(Z)$

Note: To simplify our analysis we assume that prices of goods and services do not depend on their use.

In an input-output table framework, we can have the following two identities for total output by (broad) sector:

(A1)
$$Q_i^{(Z)} = E_i^{(Z)} + X_i^{(Z)} + \sum_{j=G,D,S} A_{ij}^{(Z)}$$

(A2)
$$Q_i^{(Z)} = V_i^{(Z)} + T_i^{(Z)} + \sum_{i=G,D,S} A_{ij}^{(Z)} + \sum_{i=G,D,S} A_{ij}^{M(Z)}$$

Nominal GDP and GDE of country Z are then expressed by

(A3)
$$GDP^{(Z)} = \sum_{i=G,D,S} \left(Q_i^{(Z)} - \sum_{j=G,D,S} \left(A_{ij}^{(Z)} + A_{ij}^{M(Z)} \right) \right) = \sum_{i=G,D,S} \left(V_i^{(Z)} + T_i^{(Z)} \right)$$

and

(A4)
$$GDE^{(Z)} = \sum_{i=G,D,S} \left(E_i^{(Z)} + X_i^{(Z)} - \sum_{j=G,D,S} A_{ij}^{M(Z)} \right)$$

From equations (A1) and (A2), we can have the identity $GDP^{(Z)} = GDE^{(Z)}$ for country *Z*.

Let us now introduce prices. Laspeyres price index for value added of sector *i* in country *Z*, $PL_i^{V(Z)}$ is defined by

(A5)
$$PL_{i}^{V(Z)} = \frac{P_{i}^{(Z)}Q_{i}^{(B)} - \sum_{j=G,D,S} \left(P_{j}^{(Z)}A_{ij}^{(B)} + P_{j}^{M(Z)}A_{ij}^{M(B)}\right)}{Q_{i}^{(B)} - \sum_{j=G,D,S} \left(A_{ij}^{(B)} + A_{ij}^{M(B)}\right)}$$

where variables with (B) denote values for country B.

Paasche price index for value added of sector *i* in country *Z*, $PP_i^{V(Z)}$ is defined by

(A6)
$$PP_{i}^{V(Z)} = \frac{1}{\frac{Q_{i}^{(Z)}}{P_{i}^{(Z)}} - \sum_{j=G,D,S} \left(\frac{A_{ij}^{(Z)}}{P_{j}^{(Z)}} + \frac{A_{ij}^{M(Z)}}{P_{j}^{M(Z)}}\right)}{Q_{i}^{(Z)} - \sum_{j=G,D,S} \left(A_{ij}^{(Z)} + A_{ij}^{M(Z)}\right)}$$

Therefore, PPP for the value added of sector i in country Z is defined as a Fisher geometric mean:

(A7)
$$PPP_i^{V(Z)} = \sqrt{PL_i^{V(Z)} \cdot PP_i^{V(Z)}}$$

Finally, we can define the PPP for GDP of country Z based on the Laspeyres and Paasche indices, that is,

(A8)
$$PL^{GDP(Z)} = \frac{\sum_{i=G,D,S} P_i^{(Z)} Q_i^{(B)} - \sum_{i=G,D,S} \sum_{j=G,D,S} \left(P_j^{(Z)} A_{ij}^{(B)} + P_j^{M(Z)} A_{ij}^{M(B)} \right)}{\sum_{i=G,D,S} Q_i^{(B)} - \sum_{i=G,D,S} \sum_{j=G,D,S} \left(A_{ij}^{(B)} + A_{ij}^{M(B)} \right)}$$

and

(A9)
$$PP^{GDP(Z)} = \frac{1}{\frac{\sum_{i=G,D,S} \frac{Q_i^{(Z)}}{P_i^{(Z)}} - \sum_{i=G,D,S} \sum_{j=G,D,S} \left(\frac{A_{ij}^{(Z)}}{P_j^{(Z)}} + \frac{A_{ij}^{M(Z)}}{P_j^{M(Z)}}\right)}{\sum_{i=G,D,S} Q_i^{(Z)} - \sum_{i=G,D,S} \sum_{j=G,D,S} \left(A_{ij}^{(Z)} + A_{ij}^{M(Z)}\right)},$$

PPP for the GDP of country Z is then defined as a Fisher geometric mean of the two price indices:

(A10)
$$PPP^{GDP(Z)} = \sqrt{PL^{GDP(Z)} \cdot PP^{GDP(Z)}}.$$

Similarly, the Laspeyres and Paasche price indices for the GDE of country *Z*, $PL^{GDE(Z)}$ and $PP^{GDE(Z)}$, can be defined as follows:

(A11)
$$PL^{GDE(Z)} = \frac{\sum_{i=G,D,S} \left(P_i^{(Z)} E_i^{(B)} + P_i^{(Z)} X_i^{(B)} - \sum_{j=G,D,S} P_i^{M(Z)} A_{ij}^{M(B)} \right)}{\sum_{i=G,D,S} \left(E_i^{(B)} + X_i^{(B)} - \sum_{i=G,D,S} A_{ij}^{M(B)} \right)}$$

and

(A12)
$$PP^{GDE(Z)} = \frac{1}{\frac{\sum_{i=G,D,S} \left(\frac{E_i^{(Z)}}{P_i^{(Z)}} + \frac{X_i^{(Z)}}{P_i^{(Z)}} - \sum_{j=G,D,S} \frac{A_{ij}^{M(Z)}}{P_i^{M(Z)}}\right)}{\sum_{i=G,D,S} \left(E_i^{(Z)} + X_i^{(Z)} - \sum_{j=G,D,S} A_{ij}^{M(Z)}\right)}$$

Therefore, the PPP for the GDE of country Z can be obtained by a Fisher geometric mean:

(A13)
$$PPP^{GDE(Z)} = \sqrt{PL^{GDE(Z)} \cdot PP^{GDE(Z)}}$$

In a nutshell, based on Equations (A1) and (A2) we can derive the identity $PPP^{GDP(Z)} = PPP^{GDE(Z)}$ and based an input-output framework, we can conceptually prove that an estimated production-side PPP must be equal to an estimated expenditure-side PPP, that is, $PPP^{GDP(Z)} = PPP^{GDE(Z)}$. This conceptual set up is important for checking up discrepancy in empirical results and identifying potential problems although it is highly data demanding.

APPENDIX 2: DATA SOURCES, PROBLEMS AND TREATMENT

(To be completed...)

References

(To be finalized...)

- Abramovitz, M. (1989), Thinking About Growth, Cambridge University Press, Cambridge.
- Abramovitz, M. (1990), "The Catch-Up Factor in Postwar Economic Growth", *Economic Inquiry*, Vol. 28, January, pp. 1-18
- Allen, Bob, Jean-Pascal Bassino, Debin Ma, Christine Moll-Murata, and Jan Luiten van Zanden (2005) "Wages, Prices and Living Standards in China, Japan and Europe", downloadable at <u>http://gpih.ucdavis.edu/Papers.htm</u>.
- Balassa, Bela (1964) "The Purchasing Power Parity Doctrine: A Reappraisal." *Journal of Political Economy* Vol.72: 584-96.
- Bassino, Jean-Pascal (2005) "How Poor Was Asia before the Industrialization?" unpublished manuscript, Tokyo: Maison Franco-Japonaise.
- Bassino, Jean-Pascal, and Debin Ma (2005) "Japanese Wages for Unskilled Labourers in 1730-1910: an International Perspective," forthcoming in *Research in Economic History*.
- Bassino, Jean-Pascal, and Pierre van der Eng (2002) "Economic Divergence in East Asia: New Benchmark Estimates of Levels of Wages and GDP, 1913-1970," paper presented at the XIII Economic History Congress, July 22-26, 2002, Buenos Aires.
- Beasley, W.G. (1995). *The Rise of Modern Japan: Political, Economic and Social Change since 1850.* New York: St. Martin's Press
- Broadberry, Stephen (1998), "How Did the United States and Germany Overtake Britian? A Sectoral Analasis of Comparative Productivity Levels, 1870-1990," *The Journal of Economic History*, Vol. 58, No. 2, pp. 375-407.
- Broadberry, Stephen and Carsten Burhop (2007), "Comparative Productivity in British and German Manufacturing Before World War II: Reconciling Direct Benchmark Estimates and Time Series Projections", *The Journal of Economic History*, Vol. 67, No. 2, pp. 315-349.
- Caselli, Francesco (2005), "Accounting for Cross-Country Income Differences," in: Philippe Aghion & Steven Durlauf (ed.), Handbook of Economic Growth, edition 1, volume 1, chapter 9, pages 679-741 Elsevier.
- Chen, Zhen (ed.) (1961), *Zhongguo Jindai Gongyeshi Ziliao* (Study Materials of Industrial History in Contemporary China), Vol. 4 (1) and (2). Beijing: Shenghuo-Dushu-Xinzhi Sanlian Shudian (Press)
- Chenery, Hollis, Sherman Robinson and Moshe Syrquin (1986), *Industrialization and Growth: A Comparative Study*, published for the World Bank by Oxford University Press.
- Choi, Seong-jin (2006), "Stature and the Standard of Living in Korea, 1910-1945 (in Korean)," *Review of Economic History* (*Kyungje Sahak*), Vol. 40, pp. 82-116.

- Chosen Government-General (Chosen Sotoku-fu) (1937), *Statistics on Manufactured Products* 1935 (Chosen Kosan Tokei showa 10nen), Chosen Government-General (Chosen Sotoku-fu)
- Chosen Government-General (Chosen Sotoku-fu) (1941), *Statistics on Manufactured Products* (Chosen Kosan Tokei, showa 14nen), Chosen Government-General
- Denison, Edward F. (1967), Why Growth Rates Differ? Washington DC, Brookings Institute
- Diewert, W.E. (1992), "Fisher ideal output, input, and productivity indexes revisited", *Journal of Productivity Analysis*, No. 3, 211–248 (September).
- Feenstra, R., A. Heston, M.P. Timmer and H. Deng (2008), "Estimating Real Production and Expenditures Across Nations: A Proposal for Improving the Penn World Tables", *Review of Economics and Statistics*, Vol. x, No. x, pp. xxx
- Feenstra, R., A. Heston, M.P.Timmer and H. Deng (2008, forthcoming), "Estimating Real Production and Expenditures Across Nations: A Proposal for Improving the Penn World Tables", Review of Economics and Statistics.
- Fremdling, Rainer, Herman de Jong and Marcel Timmer (2007), "British and German Manufacturing Productivity Compared: A New Benchmark for 1935-36 Based on Double Deflated Value Added," *Journal of Economic History*, Vol. 67, No. 2, pp. 350-378.
- Fukao, K., Ma, D., and Yuan, T. (2004) "International Comparison in Historical Perspective: Reconstructing the 1934-36 Benchmark Purchasing Power Parity for Japan, Korea and Taiwan," Discussion Paper Series A, no. 442, Tokyo: the Institute of Economic Research, Hitotsubashi University
- Fukao, K., Ma, D., and Yuan, T. (2006) "International Comparison in Historical Perspective: Reconstructing the 1934-36 Benchmark Purchasing Power Parity for Japan, Korea and Taiwan," *Explorations in Economic History*.
- Fukao, Kyoji and Osamu Saito (2006) "Japan's Alternating Phases of Growth and Outlook for the Future," Hi-Stat Discussion Paper Series, No. 196, Institute of Economic Research, Hitotsubashi University.
- Fukao, Kyoji, Debin Ma and Tangjun Yuan (2007), "Real GDP in Pre-War East Asia: A 1934-36 Benchmark Purchasing Power Parity Comparison with the U.S.," *Review of Income and Wealth*, Vol. 53, No. 3, pp. 503-537.
- Fukao, Kyoji, Harry X. Wu and Tangjun Yuan (2008), "Comparative Output and Labour Productivity in Manufacturing between China, Japan and Korea and the United States for circa 1935, A Production PPP Approach", prepared for The Harvard-Hitotsubashi-Warwick Conference: "Economic Change around the Indian Ocean in the Very Long Run", Venice, 22-24 July 2008
- Gilbert, M. and I.B. Kravis (1954), An International Comparison of National Products and the Purchasing Power of Currencies, Paris, OEEC
- Godo, Yoshihisa, and Yujiro Hayami (2002) "Catching Up in Education in the Economic Catch-up of Japan with the United States, 1890 1990" *Economic Development and Cultural Change*, vol. 50, no. 4, pp. 961-78.
- IER (Institute of Economic Research, Hitotsubashi University) (2000), Asian Historical Statistical Database, by the Institute of Economic Research,

Hitotsubashi University, some of the data are available at <u>http://hi-stat.ier.hit-u.ac.jp/english/research/database/ashstat.html</u>

- Inklaar, R. and M. P. Timmer (2007), "International Comparisons of Industry Output, Inputs and Productivity Levels: Methodology and New Results", Economic Systems Research, 19(3), pp. 343-364.
- Inklaar, R., M. O'Mahony, C. Robinson and M. P. Timmer (2003), "Productivity and Competitiveness in the EU and the US', O'Mahony, Mary and Bart van Ark, eds. (2003), EU Productivity and Competitiveness: An Industry Perspective, Office for Official Publications of the European Communities: Luxembourg.
- Inklaar, R., M. P. Timmer and B. van Ark (2008), "Market Services Productivity", Economic Policy, 23, pp. 141-194.
- Inklaar, R., Timmer, M.P. and van Ark, B. (2007), Mind the gap! International comparisons of productivity in services and goods production, German Economic Review, 8, pp. 281-307.
- Inklaar, Robert and Marcel P. Timmer (2008), "GGDC Productivity Level Database: International Comparison of Output, Inputs and Productivity at the Industry Level," a paper prepared for the 30th General Conference of The International Association for Research in Income and Wealth, Portoroz, Slovenia, August 24-30, 2008, Groningen Growth and Development Centre, University of Groningen, The Netherlands.
- Japan Industrial Productivity Database JIP 2008, available at <u>http://www.rieti.go.jp/</u> en/database/JIP2008/index.html
- Jong de, Herman and Pieter Woltjer (2007), "Measuring Divergence. A New Estimate of Real Output and Productivity in British and American Manufacturing in 1935," paper prepared for the Seventh Conference of the European Historical Economics Society, Lund, 29 June-1 July 2007.
- Jorgenson, D.W. and Nomura, K. (2007), The industry origins of the US-Japan productivity gap, Economic Systems Research, 19 (3).
- Kim, Duol and Ki-Joo Park (2008). "Colonialism and Industrialisation: Factory Labour Productivity of Colonial Korea, 1913-37." Australian Economic History Review 48:1, pp. 26-46
- Kim, Nak Nyeon (ed.) (2008), *Economic Growth in Korea* (Japanese Translation by Moon, Ho II and Kim Seung Mi), University of Tokyo Press (The Korean version was published in 2006 by Seoul National University Press, Seoul)
- Kouwenhoven, R., 1996. A comparison of Soviet and US industrial performance, 1928-90. Paper for The 24th General Conference of the International Association of Research in Income and Wealth, Lillehammer, Norway.
- Kravis, Irving B., A. Heston and R. Summers (1982), World Product and Income: International Comparison of Real Gross Product, John Hopkins, Baltimore
- Kuznets, S. (1971), Economic Growth of Nations Total Output and Production Structure, Cambridge MA: Harvard University Press
- Lieu, D.K. (Liu Ta-chün) (1955), Industrial Development in Communist China, New York, Sino-American Amity

- Liu, Ta-chung (1946) China's National Income 1931-36, An Exploratory Study, Washington, D.C.: the Brookings Institution.
- Liu, Ta-chung, and Kung-chia Yeh (1965), *The Economy of the Chinese Mainland: National Income and Economic Development, 1933–1959*, Princeton University Press, Princeton
- Luo, Huanzhen (2000), Re-estimates of Population of the Republic of China: 1912-36, *COE Working Paper WP89*, Institute of Economic Research, Hitotsubashi University.
- Ma, Debin (2008), "Economic growth in the lower Yangzi region of China in 1911-1937: A quantitative and historical analysis", *Journal of Economic History*, vol. 68 (2): 355-392.
- Maddison, A., van Ark, B., 1988. Comparisons of Real Output in Manufacturing, *The World Bank Policy, Planning, and Research Working Papers* WPS 5. International Economics Department, The World Bank, Washington, D.C
- Maddison, Angus (1970), *Economic Progress and Policy in Developing Countries*, Allen and Unwin, London and Norton, New York.
- Maddison, Angus (1983), "A Comparison of Levels of GDP per capita in Developed and Developing Countries", *Journal of Economic History*, March, pp.2-41
- Maddison, Angus (1987), "Growth and Slowdown in Advanced Capitalist Economies: Techniques of Quantitative Assessment", *Journal of Economic Literature*, June.
- Maddison, Angus (1998), *Chinese Economic Performance in the Long Run*, OECD Development Centre, Paris.
- Maddison, Angus (2001), The World Economy: A Millennial Perspective, OECD, Paris
- Maddison, Angus (2003), *The World Economy: Historical Statistics*, OECD Development Centre
- Maddison, Angus (2007), Contours of the World Economy, 1-2030 AD, Essays in Macro-Economic History, Oxford University Press
- Maddison, Angus and Harry X. Wu (2008), "Measuring China's Economic Performance", with Angus Maddison, World Economics, Vol. 9 (2), April-June
- Maddison, Angus. and B. van Ark (2002), "The International Comparison of Real Product and Productivity," in A. Maddison, D.S. Prasada Rao and W.F. Shepherd, eds., The Asian Economies in the Twentieth Century, Edwar Elgar, Cheltenham, pp. 5-26
- Makino, Fumio and T. Kubo (1997), Industrial Output and Index Estimates in Republic China, *Working Paper* D97-18, Institute of Economic Research, Hitotsubashi University
- Ministry of Industry, National Government (1935), *Zhongguo Jinji Nianjian* 1935 (*China Economic Annals*), Shanghai: Commercial Press.
- Mitsuhiko Kimura, 2008, "The economics of Japanese imperialism in Korea, 1910-1939", *The Economic History Review*, Volume 48 Issue 3, Pages 555 - 574

- Mizoguchi, T. and M. Umemura (1988) Basic Economic Statistics of Former Japanese Colonies, 1895-1938, Estimates and Findings, (in Japanese), Tokyo: Toyo Keizai Shinpo Sha.
- Nishikawa, Shunsaku and Hisao Koshihara (1981), "Input-Output Table for 1935, Estimation and Implications (1935-nen no Tonyu-Sanshutu-hyo: Sono Suikei to Ganni," in Ryuei Nakamura (eds.), An Analysis of Japan's Economy During the Interwar Period (Senkan-ki no Nihon Keizai Bunseki), Yamakawa Shuppan-sha, Tokyo.
- Nishimizu, M. and S. Robinson (1984), "Trade policies and productivity change in semi-industrialised countries," *Journal of Development Economics* 16 (1-2): 177-206.
- North Douglas C. (1990), *Institutions, Institutional Change and Economic Performance*, Cambridge University Press, Cambridge.
- NRC (National Resource Commission of Nationalist Government) (1937), Chung-kuo kung-yeh tiao-ch'a pao-kao (Report on A Survey of China's Industry), Three Volumes in Chinese. Nanjing: National Resource Commission of Nationalist Government.
- Odaka, Konosuke and Tangjun Yuan (2006), "Disguised Unemployment Revisited", Journal of International Economic Studies, No. 20, pp. 57-73
- Ohkawa K. and M. Shinohara, eds. (1979) Patterns of Japanese Economic development: A Quantitative Appraisal, New Haven, Conn.: Yale University Press.
- OIAPS (Gongnongye Shangpin Bijia Wenti Diaocha Yanjiu Ziliao Bangongshi [Office for Industrial and Agricultural Price Survey]) (1956-57) "Gongnongye Shangpin Bijia Wenti Diaocha Yanjiu Ziliao Huibian (Archive Materials for Studies of Industrial and Agricultural Commodity Prices)", Shanghai Volume (1956)
- Ou (Wu) Pao-san (1946), "A New Estimate of China's National Income," *Journal of Political Economy*, 54:6 (Dec., 1946), pp. 547-554.
- Ou (Wu) Pao-san (1947), 1933 Chung-Kuo Kuo-min So-te (China's National Income 1933), 2 Vols. in the Series of Institute of Social Science, Central Academy of Scientific Research. Shanghai: Zhonghua Shuju (China Press)
- Ou (Wu) Pao-san (1947), *National Income of China*, 1933, 1936 and 1946, Academia Sinica, Nanking
- Ou (Wu) Pao-san (1948), *Capital formation and consumers' outlay in China*, Harvard University, PhD thesis
- Paige, D. and G. Bombach (1959), A Comparison of National Output and Productivity, Paris: OEEC.
- Park, Ki-Joo (2008), "Mining and Manufacturing", Chapter 4, pp. 77-116, in Kim, Nak Nyeon (ed.), *Economic Growth in Korea* (Japanese Translation by Moon, Ho II and Kim Seung Mi), University of Tokyo Press.
- Perkins, H. Dwight, "Growth and changing structure of China's twentieth century economy", in Perkins (ed.), *China's Modern Economy in Historical Perspective*

- Pilat, D. (1996), 'Labour productivity levels in OECD countries: estimates for manufacturing and selected service sectors', OECD Economics Department Working Papers No. 169, Paris: OECD.
- Pilat, D. and Prasada Rao, D.S. (1996), "Multilateral Comparisons of Output, Productivity and Purchasing Power Parities in Manufacturing", *Review of Income and Wealth*, July, pp. 113-130
- Pilat, Dirk (1993), *The Economics of Catch Up: The Experience of Japan and Korea*, Groningen Growth and Development Centre, Monograph Series, No.2, Groningen
- Pilat, Dirk (1994), *The Economics of Rapid Growth: The Experience of Japan and Korea*, Edward Elgar, Aldershot, U.K., and Brookfield, U.S.
- Rao, D.S. Prasada, and M.P. Timmer (2003), "Purchasing Power Parities for Manufacturing Sector Price Comparisons Using New Multilateral Index Number Methods", *Review of Income and Wealth*, 49, 4, 491-512
- Rostas, L. (1948), *Comparative Productivity in British and American Industry*. Cambridge, UK: Cambridge University Press.
- Samuelson, P. A. (1964) "Theoretical notes on trade problems." *The Review of Economics and Statistics*, Vol. 46, No. 2 (May): 145-54.
- Shinohara Miyohe (1972), "Mining and Manufacturing", Vol. 10 in Ohkawa, K. Shinohara M. and Umemura M. (eds.), *Long-Term Economic Statistics*, Tokyo, Keizai Shinposha
- Statistical Division of Cabinet Office (1935) Handbook of Labour Statistics 1935 (Showa 10 nen, Roudou Tokei Youran). Tokyo: Statistical Division of Cabinet Office
- Statistical Division of the Commerce and Manufacturing Minister's Office (Sho Ko Daijin Kanbo Tokei-ka) (1937), *Census of Factories* 1935, (Showa 10nen, Kojo Tokei Hyo). Tokyo: Statistical Division of the Commerce and Manufacturing Minister's Office
- Summers, Robert, and Alan Heston (1991), "The Penn World Table (mark 5): an expanded set of international comparisons, 1950–1988", *Quarterly Journal of Economics*, 106, 2, 337-68
- Szirmai, A. Ren, R., (2000). Comparative performance in Chinese manufacturing, 1980-1992. *China Economic Review* 11, 16-53.
- Taylor, A.M. and M.P. Taylor (2004), "The purchasing power parity debate", Journal of Economic Perspectives, 18(4), pp. 135-158.
- Timmer, Marcel and Gerard Ypma, (2006), Productivity Levels in Distributive Trades: A New ICOP Dataset for OECD Countries, Working Paper GD-83, Groningen Growth and Development Centre, University of Groningen.
- U.S. Bureau of Foreign and Domestic Commerce (1936), *Statistical Abstract of the United States 1936*, United States Government Printing Office.
- U.S. Department of Commence (1936), *Statistical Abstract of the United States 1936*, United States Government Printing Office, Washington D.C.

- U.S. Department of Commerce (1938), *Bicentennial Census of Manufactures 1935*, United States Government Printing Office, Washington D.C.
- U.S. Department of Commerce, Bureau of the Census (1976), *Historical Statistics of the United States, Colonial Times to 1970*, Parts 1 and 2 (Bicentennial Edition), Washington D.C.: Bureau of the Census
- van Ark, Bart (1993), International Comparisons of Output and Productivity Manufacturing Productivity Performance of Ten Countries from 1950 to 1990, Groningen Growth and Development Centre, Monograph Series, No.1, Groningen
- van Ark, Bart and R.H. McGuckin (1999), "International Comparisons of Labor Productivity and per Capita Income", Monthly Labor Review, July 1999, pp. 33-41.
- van Ark, Bart, And D. Pilat (1993), "Productivity Levels In Germany, Japan And The United States", Brookings Papers on Economic Activity, Microeconomics, 2, pp.1-48.
- van Ark, Bart, M. O'Mahony and M.P. Timmer (2008), "The Productivity Gap between Europe and the U.S.: Trends and Causes", Journal of Economic Perspectives, 22(1), pp. 25–44.
- van Ark, Bart, Pilat, D., 1993. Productivity levels in Germany, Japan, and the United States: Differences and causes. Brookings Papers on Economic Activity: Microeconomics 2, 1-48.
- Williamson, Jeffery G. (1998), Real Wages and Relative Factor Prices in the Third World Before 1940: What Do they Tell Us about the Sources of Growth? Presented at the Conference on Growth in the 19th and 20th Century: A Quantitative Economic History, December 14-15, 1998, Valencia, Spain.
- Williamson, Jeffery G. (2002), "Land, labor, and Globalization in the Third World, 1870-1940", *Journal of Economic History*, Vol. 62 (1): 55-85.
- Wu, Harry X., (2001), "China's comparative labour productivity performance in manufacturing 1952-1997: Catching up or falling behind? *China Economic Review*, 12 (1): 162-189
- Yamazawa, Ippei and Yuzo Yamamoto (1979), Foreign Trade and Balance of Payments (in Japanese), Vol. 15, in Ohkawa, K. Shinohara M. and Umemura M. (eds.), Long-Term Economic Statistics, Tokyo, Keizai Shinposha.
- Yukizawa, Kenzo (1977), Rodo Seisansei no Kokusai Hikaku Nichibei Kogyo wo Chushin to Shite (International Comparison of Labour Productivity, Focused on the Japanese and the U.S. Manufacturing Sector), Tokyo: Sobunsha.

APPENDIX 3: DETAILS OF PPP ESTIMATION FOR THE CASE OF CHINA/JAPAN

TABLE A1: CHINESE PRICE LEVEL (JAPANESE LEVEL = 1), MANUFACTURING SECTOR

		Japa	nese weigl	ht	Chi	nese weight	t	Ja	panese		Chinese		Chinese/Ja	Chi	nese price lev	el
		I	п	Ш	I	п	ш	Units	Prices	Units	Prices	source	panese	Japanese weight	Chinese weight	Fisher average
All industries														exchang 1.547	<u>rate Yen/Yu</u> 1.001	an=0.88 1.244
Food and kindred products		0.108			0.251									0.967	0.647	0.791
Liquor		0.100	0.494		0.231	0.234								0.615	0.666	0.640
Liquoi	Liquor (Bai jiu)		0.474	0.768		0.2.54	0.500	100L	40.057	dan	9.445	Ь	0.536	0.015	0.000	0.040
	Beer			0.232			0.500	100L 100L	46.599	dan	18.000	b	0.330			
Flour and Starch	beer		0.217	0.252		0.497	0.500	TOOL	40.577	uun	10.000	υ	0.070	0.513	0.513	0.513
Flour and Startin	Wheat flour		0.217	1.000		0.477	1.000	ka	0.152	50kg	1.710	a	0.513	0.515	0.515	0.515
Cooking oil	Wheat Hour		0.044	1.000		0.134	1.000	кg	0.152	JOKg	1.710	u	0.515	0.862	0.763	0.811
Cooking on	Rap oil		0.044	0.475		0.154	0.340	kg	0.367	dan	13.646	Ь	0.844	0.002	0.705	0.011
	Sesame oil			0.475			0.330	kg	0.508	dan	13.327	b	0.596			
	Soybean oil			0.031			0.330		0.356	dan	14.537	a	0.929			
Sugar	Soybean on		0.173	0.444		0.019	0.550	ĸg	0.550	uun	14.557	u	0.929	0.803	0.949	0.873
Sugar	Brown sugar		0.175	0.130		0.019	0.500	kg	0.230	dan	14.500	а	1.430	0.805	0.949	0.875
	White sugar			0.130			0.500		0.230	dan dan	7.453	a a	0.710			
Salt	white sugar		0.037	0.870		0.036	0.500	ĸg	0.239	uun	7.455	u	0.710	6.985	6.985	6.985
Sait	Salt		0.037	1.000		0.050	1.000	ha	0.046	dan	14.070	~	6.985	0.985	0.985	0.985
Tea	San		0.020	1.000		0.008	1.000	ĸg	0.040	aan	14.070	а	0.985	3.345	3.869	3.597
Tea	Green tea		0.020	0.943		0.008	0.500	ha	0.524	dan	75.125	Ь	3.259	5.545	5.809	3.397
	Black tea			0.943			0.500		0.524	dan dan	111.708	b b	4.760			
Other food	Black lea		0.015	0.037		0.073	0.500	ĸg	0.555	aan	111.708	v	4.700	3.282	3.282	3.282
Other 100d	Ice		0.015	1.000		0.075	1.000	ha	6.306	to	n 18.211	а	3.282	5.262	5.262	3.282
Textiles and their products	Ice	0.310		1.000	0.474		1.000	ĸg	0.500	10	10.211	а	5.282	1.778	1.371	1.561
		0.310	0.160		0.4/4	0.117								0.929	0.929	0.929
Silk	Raw silk		0.100	1.000		0.117	1.000	l	11.352	dan	463.963	-	0.929	0.929	0.929	0.929
Yarn	Raw slik		0.367	1.000		0.502	1.000	кg	11.552	aan	403.903	а	0.929	1.003	1.137	1.068
rarn	6 #		0.30/	0.7.40		0.502	0.240	l	1.247		162 100		0.814	1.005	1.137	1.068
	Cotton Silk			0.748			0.340		1.247	jian	162.100	а				
	Siik Woolen			0.058 0.194			0.330	kg	5.847	dan	323.951 642.301	a	1.259			
F1 ·	woolen		0 121	0.194		0.268	0.330	кg	2.437	jian	642.301	а	1.651	2.7(1	2.840	2.800
Fabrics	G (4) (W		0.431	0.725		0.268	0.295		0.100		0.007		2.250	2.761	2.840	2.800
	Cotton twill			0.135				m	0.132	shichi	0.087	b	2.250			
	Poplin			0.125			0.295	<i>m</i>	0.177	shichi	0.166	Ь	3.200			
	Calico			0.269			0.295	tan(10m)	0.526	shichi	0.062	Ь	4.018			
	Serge			0.471		0.000	0.114	m	1.617	m	2.948	b	2.072	1.412	1 (12	
Knitgoods	<i></i>		0.024	7 000		0.082	1.000	,	2.057	,	5 (12		1.(10	1.612	1.612	1.612
A 11	Cotton underwear		0.010	1.000		0.000	1.000	dozen	3.957	dozen	5.613	b	1.612	1.02.	1.00.	1.05.
Cotton			0.018			0.030	1.000		0.505		18 865		1.02.	1.834	1.834	1.834
· · · · ·	Cotton wadding	0.022		1.000	0.002		1.000	kg	0.592	dan	47.782	а	1.834	0.061	0.061	0.044
Wood products		0.023	1 000	1 000	0.003	1.000	1.000	2.2	1.000	2.2	1.600		0.04	0.964	0.964	0.964
Wood board			1.000	1.000		1.000	1.000	3.3sq,m	1.980	3.3sq.m	1.680	d	0.964	0.964	0.964	0.964

		Japa	anese weigl	ht	Ch	inese weigh	t	J	apanese		Chinese		Chinese/Ja		iese price lev	el
			п	ш	I	п	ш	Units	Prices	Units	Prices		-	Japanese	Chinese	Fisher
		1	п	111	1	п	m	Units	Prices	Units	Prices	source	panese	weight	weight	average
														exchang	rate Yen/Yu	
Paper and allied industries		0.041			0.045									1.368	1.205	1.284
Paper			0.827	1.000		0.542	1.000	kg	0.232	kg	0.294	с	1.443	1.443	1.443	1.443
Paperboard			0.173	1.000		0.458	1.000	kg	0.104	kg	0.093	c	1.008	1.008	1.008	1.008
Chemicals and allied produc	te	0.147	0.175	1.000	0.070	0.100	1.000	~~8	0.101	~~~	01075	· ·	11000	2.010	0.859	1.314
Acid	15	0.14/	0.292		0.070	0.015								2.956	2.900	2.928
Aciu	G 16 · · · 1		0.292	0.750		0.015	0.740		20.007		02 247		2.752	2.930	2.900	2.928
	Sulfuric acid			0.758				tons	38.087	tons	92.247	a				
	Hydrochloric acid			0.069			0.250	tons	36.934	50kg	5.553	b	3.417			
	Nitric acid			0.173			0.009	tons	110.220	tons	355.420	а	3.664			
Soda			0.082			0.105								0.873	0.987	0.929
	Carbonated soda			0.048			0.334	kg	0.126	tons	99.562	а	0.900			
	Caustic soda			0.829			0.333	kg	149.906	tons	99.562	а	0.755			
	Bleaching powder			0.123			0.333	tons	67.397	50kg	4.928	Ь	1.662			
Other industrial chemicals	B F		0.066			0.044				0		-		3.333	1.872	2.498
outer industrial chemicals	Naphthalene		0.000	0.266		0.044	0.250	kg	0.085	tons	221.452	b	2.977	0.000	1.072	2.490
				0.208			0.250		0.756	加仑	1.114	-	8.844			
	Alcohol							kg				а				
	Silicate			0.355			0.250	kg	0.070	dan	4.616	а	1.500			
	Alum			0.170			0.250	kg	77.818	tons	67.034	b	0.979			
Dye, Paint and Pigment			0.082			0.130								2.052	0.912	1.368
	Blue sulfide			0.492			0.334	kg	0.370	jin	0.421	а	2.587			
	Lacquer			0.095			0.333	kg	3.252	pounds	0.553	а	0.426			
	Paint			0.413			0.333	kg	0.540	pounds	0.385	а	1.788			
Oil			0.087			0.010				<i>p</i> • • • • • • •		-		3.774	1.947	2.711
01	Gasoline		0.007	0.255		0.010	0.200	tons	59.976	kg	0.323	Ь	6.120	5.774	1.947	2.711
	Kerosene			0.233					61.487	0	0.323	b	4.029			
							0.200	tons		kg						
	Lubricants			0.470			0.200	tons	91.928	kg	0.211	b	2.608			
	Asphalt			0.068			0.200	tons	27.636	tons	89.982	b	3.700			
	Gelatin			0.029			0.200	kg	1.149	dan	33.644	а	0.665			
Vegetable oil and fat			0.045			0.016								1.040	1.170	1.103
	Cotton seed oil			0.572			0.334	kg	0.339	dan	10.671	b	0.715			
	Coconut oil			0.419			0.333	kg	0.274	tons	352.603	b	1.460			
	Tung oil			0.009			0.333	kg	0.427	dan	39.294	b	2.092			
Fertilizer	Tung on		0.191	0.005		0.401	0.000	18	0.127	cicini	57.27	0	2.072	0.681	0.681	0.681
rerunzer	Bean cake		0.191	1.000		0.401	1.000		80.573	1	2 415		0 6 9 1	0.001	0.001	0.001
a.	Беап саке			1.000		0.101	1.000	tons	80.575	dan	2.415	а	0.681			
Soap	_		0.030			0.121								1.001	1.001	1.001
	Soap			1.000			1.000	kg	0.189	box(30kg)	5.000	а	1.001			
Pulp			0.028			0.007								2.789	2.789	2.789
	Pulp			1.000			1.000	kg	93.260	tons	228.914	а	2.789			
Tannery			0.047			0.081								0.777	0.844	0.810
-	Cowhide			0.800			0.500	pieces	7.660	pieces	3.874	а	0.575			
	Acacia extract			0.200			0.500	kg	0.428	gong-dan	59.679	a	1.586			
Coke, coal	Actualit Catriact		0.052	0.200		0.070	0.500	~~5	0.420	Song aun	57.617	u	1.500	0.789	0.817	0.803
CORC, COAI	Coke		0.052	0.763		0.070	0.500	4000	14 005	1000	10.040	~	0.761	0.709	0.017	0.005
1							0.500	tons	14.995	tons	10.040	a	0.761			
1	Coal			0.237			0.500	kg	20.753	tons	16.090	b	0.881			

		Japa	anese weigl	ht	Ch	inese weigh	t	Ja	panese		Chinese		Chinese/Ja		iese price leve	
		I	п	ш	I	п	ш	Units	Prices	Units	Prices	source	panese	Japanese weight	Chinese weight	Fisher average
															rate Yen/Yu	
Stone, clay, and glass produ	ets	0.026			0.032									1.242	0.876	1.043
Glass			0.284			0.141								0.997	0.997	0.997
	Glass plate			1.000			1.000	box	7.567	box	6.640	b	0.997			
Brick and Tile			0.131			0.207								0.936	0.893	0.914
	Black brick			0.127			0.334	numbers	0.014	numbers	0.008	а	0.648			
	Common brick			0.724			0.333	numbers	0.071	numbers	0.046	а	0.742			
	Tile			0.148			0.333	numbers	0.043	10000ge	807.117	b	2.135			
Cement			0.420			0.430						b		0.610	0.610	0.610
	Cement			1.000			1.000	barrel	3.213	tons	38.192		0.610			
Lime			0.025			0.014								4.074	4.074	4.074
	Lime		0.020	1.000		0.011	1.000	tons	6.997	dan	1.254	а	4.074			1.071
Enamelware	Link		0.140	1.000		0.208	1.000	10/15	0.777	uun	1.254	u	1.074	3.417	3.417	3.417
Enamerware	Washbasin or Cup		0.140	1.000		0.200	1.000	numbers	0.082	dozen	2.957	Ь	3.417	5.417	5.417	5.417
Metals and metal products	washbashi or Cup	0.174		1.000	0.046		1.000	numbers	0.082	uozen	2.931	υ	5.417	1.392	0.984	1.171
		0.1/4	0.714		0.040	0.113								1.592	1.414	1.171
Metal smelting materials	D		0.714	0.070		0.115	0.250		25.056		(1.177	,	2 0 2 0	1.501	1.414	1.437
	Pig iron			0.079			0.250	tons	35.956	tons	64.477	Ь	2.038			
	Steel Plate			0.777			0.250	kg	0.093	tons	124.458	b	1.524			
	Copper casting, rough			0.090			0.125	tons	738.087	tons	624.542	b	0.962			
	Tinplate			0.014			0.125	kg	0.303	tons	351.677	b	1.317			
	Lead			0.012			0.125	kg	0.253	dan	14.592	а	1.309			
	Aluminum			0.027			0.125		1.507	tons	1653.450	b	1.247			
Casting			0.077			0.095								1.334	1.334	1.334
	Cast-iron pipe			1.000			1.000	kg	0.089	pounds	0.047	а	1.334			
Other metal products			0.209			0.792		-		-				1.040	0.916	0.976
×	Nail			0.649			0.250	barrel	7.097	pounds	0.059	а	0.937			
	Nib			0.083			0.250	gorss	4.200	gross	1.950	b	0.528			
	Umbrella bone			0.060			0.250	dozen	1.274	dozen	1.556	a	1.388			
	Zinc plate			0.208			0.250	kg	0.186	tons	239.417	b	1.462			
Machinery	Ellie place	0.135		01200	0.049		0.200	~~8	0.100	10110	2007.117	U	11102	1.216	1.490	1.346
Machinery		0.155	0.721		0.015	0.171								0.941	0.993	0.967
wiachinery	Generators		0.721	0.230		0.171	0.300	numbers	997.064	numbers	514.771	а	0.587	0.941	0.775	0.907
	Motor *			0.250			0.300	numbers	115.957	numbers	104.882	u b	1.028			
D // LT · L/L · D	Fans		0.007	0.016		0.000	0.400	numbers	20.1114199	numbers	34.701	а	1.961	0.111	1.250	1 (20)
Battery and Light bulb			0.026			0.266	0.000							2.111	1.259	1.630
	Accumulator			0.050			0.300	numbers	14.5719917	numbers	22.500	b	1.755			
	Battery			0.278			0.300	numbers	0.11980473	dozen	0.794	а	0.628			
	Light bulb			0.672			0.400	numbers	0.065	numbers	0.158	а	2.751			
			0.026			0.266								2.753	2.151	2.433
	Thermometer			0.063			0.300	numbers	0.575	numbers	2.000	b	3.950			
	AC voltage table			0.380			0.300	numbers	13.665	numbers	12.750	b	1.060			
	Clock			0.557			0.400	numbers	1.594	numbers	5.290	а	3.771			
Vehicle			0.226			0.296								1.811	1.811	1.811
	Bicycle			1.000			1.000	numbers	24,768	numbers	39.475	а	1.811			
				1.000					= 00		22					

Preliminary, not for citation

	Japa	nese weigl	nt	Chi	inese weight		Ja	panese		Chinese		Chinese/Ja	Chir	ese price lev	el
	I	п	ш	т	п	ш	Units	Prices	Units	Prices	source	panese	Japanese	Chinese	Fisher
	1	п	m	1	п	111	Units	TILLES	Units	THEES	source	panese	weight	weight	average
													exchang	rate Yen/Yu	an=0.88
Miscellaneous industries	0.035			0.031									2.221	1.165	1.608
Thermos bottle		0.125	1.000		0.125	1.000	numbers	0.331	numbers	0.628	а	2.160	2.160	2.160	2.160
Toothbrush		0.125	1.000		0.125	1.000	dozen	0.491	numbers	0.162	а	4.505	4.505	4.505	4.505
Handkerchief		0.125	1.000		0.125	1.000	dozen	0.476	dozen	0.202	а	0.482	0.482	0.482	0.482
Straw hat		0.125	1.000		0.125	1.000	dozen	3.634	dozen	16.926	а	5.293	5.293	5.293	5.293
Matches		0.125	1.000		0.125	1.000	gross	0.383	box	54.356	а	0.806	0.806	0.806	0.806
Pen		0.125	1.000		0.125	1.000	dozen	12.247	dozen	17.01	b	1.578	1.578	1.578	1.578
Pencil		0.125	1.000		0.125	1.000	dozen	0.071	dozen	0.145	b	2.322	2.322	2.322	2.322
Parasol		0.125	1.000		0.125	1.000	numbers	2.373	donzen	15.505	а	0.619	0.619	0.619	0.619

89.000

	Chi	nese w	eight	Japa	nese we	eight	Chi	nese	Ja	panese	_	Chi	nese price le	vel
	Ι	Π	III	Ι	II	III	Unit	Price Yuan	Unit	Price Source Yen	Chinese/ Japanese	Japanese weight	Chinese weight	Fisher average
農林水産											ER Yen/Yu	0.63	0.50	0.56
耕作農業	0.76			0.66								0.53	0.42	0.47
穀物類		0.64			0.63							0.30	0.33	0.31
稲 糯稲を含む)			0.60			0.84	tons	40.7	koku	28.0	0.247			
小麦			0.20			0.07	tons	60.0	koku	13.6	0.687			
トウモロコシ			0.04			0.00	tons	39.9	koku	9.8	0.606			
大麦			0.02			0.03	tons	31.2	koku	7.8	0.492			
燕 麦			0.00			0.01	tons	29.2	koku	5.0	0.737			
裸 麦			0.00			0.04	tons	31.2	koku	11.7	0.421			
蕎 麦			0.00			0.00	tons	31.2	koku	9.7	0.412			
0 ther G rains			0.14			0.01	tons	51.8	koku	10.0	0.696			
イモ類		0.05			0.08							1.21	0.92	1.06
ジャガイモ			0.20			0.29	tons	48.8	senkan	94.7	2.196			
サツマイモ			0.80			0.71	tons	15.2	senkan	80.1	0.808			
豆類		0.07			0.02							0.53	0.53	0.53
大豆			0.30			0.50	tons	55.8	koku	15.2	0.539			
落花生			0.20			0.03	tons	76.3	100kin	9.1	0.574			
エンドウ豆			0.12			0.11	tons	45.7	koku	18.6	0.377			
ソラ豆			0.13			0.08	tons	49.5	koku	12.5	0.569			
その他豆類			0.24			0.28	tons	68.5	koku	19.3	0.568			
號菜 ·果物		0.12			0.09							1.61	1.60	1.61
蔬菜			0.69			0.73	tons	51.8	100kan	12.9	1.502			
果 物			0.31			0.27	tons	133.0	100kan	26.4	1.890			
園芸作物		0.11			0.17							0.51	0.77	0.63
胡 麻			0.04			0.00	tons	102.3	koku	24.9	0.462			
菜種			0.12			0.03	tons	89.4	koku	15.3	1.098			
綿花			0.28			0.00	tons	497.9	100kan	114.6	1.629			
麻			0.04			0.01	tons	300.0	100kan	167.4	0.672			
葉煙草			0.30			0.09	tons	339.0	100kan	234.4	0.542			
サトウキビ			0.09			0.02	tons	7.0	senkin	5.6	0.749			
毛茶			0.08			0.05	tons	514.0	100kan	191.2	1.008			
繭			0.06			0.79	tons	500.0	100kan	427.5	0.439			
畜産	0.21			0.17								0.58	0.57	0.58
家畜平均			0.97			0.89	head	22.9	head	101.6	0.572			
鶏卵			0.03			0.11	1000 (N	14.0	1000 (No.,	21.9	0.638			
林業	0.02	_		0.10	_		•					0.96	0.96	0.96
W ood board			1.00			1.00	3.3sq,m	2.0	3.3sq.m	1.7 FWY	0.964			
水産業	0.01			0.07								1.22	0.71	0.93
Fresh fish			0.80			0.50	kg	0.38	kg	0.71	0.609			
Salty fish			0.20			0.50	kg	1.85	kg	1.15	1.835			

TABLE A	2: CHIN	ESE PRICE	E LEVEL (JAPANESE	LEVEL = 1)	, AGRICULTURE, MI	NING, UTILITIES, SERVICES
			-			_	

	Chinese weight			Japa	nese we	eight	Chinese		Japanese				Chinese price level		
-	Ι	II	III	Ι	II	III	Unit	Price Yuan	Unit	Price Yen	Source	Chinese/ Japanese	Japanese weight	Chinese weight	Fisher average
鉱業													0.85	0.92	0.88
金属鉱産	0.19			0.33									0.72	0.71	0.7
			0.15			0.09	tons	2.8	tons	10.0		0.279			
マンガン			0.00			0.01	tons	9.9	tons	13.7		0.724			
金			0.26			0.40	g	2.7	g	3.1		0.864			
			0.01			0.13	g	0.0	g	0.1		0.541			
銅			0.02			0.37	tons	549.0	tons	741.5		0.740			
鉛鉱石			0.01			0.00	tons	97.5	tons	65.2		1.495			
亜鉛鉱石			0.00			0.00	tons	7.0	tons	2.1		3.368			
錫			0.47			0.00	tons	2327.0	tons	2074.3		1.122			
水銀			0.00			0.00	tons	3212.0	tons	5414.6		0.593			
アンチモン			0.07			0.00	tons	201.0	tons	235.3		0.854			
石油石炭	0.60		0107	0.65		0.00	00110	00110	00110	20010		0.0001	0.86	0.78	0.8
石炭			0.93			0.96	tons	5.3	tons	7.2		0.738			
石油			0.07			0.04	tons	125.3	tons	34.2		3.668			
非金属鉱	0.22			0.02									2.09	2.04	2.0
石膏			0.50			0.50	tons	17.0	tons	9.6		1.767			
硫黄			0.50			0.50	tons	150.0	tons	62.1		2.415			
建設業(Chine	se			Japan	lese							0.93	0.82	0.87
材料	0.50			0.50									1.20	1.05	1.12
W ood products		0.06			0.23								0.96	0.96	0.9
W ood board			1.00			1.00	3.3sq,m	2.0	3.3sq.m	1.7	d	0.964			
Stone, chy, and ghss products	3	0.62			0.26								1.24	0.88	1.0
G lass plate			0.14			0.28	box	7.6	box	6.6		0.997			
B lack brick			0.07			0.02	num be.	0.0	num bers	0.0		0.648			
Common brick			0.07			0.09	num be.	0.1	num bers	0.0		0.742			
T ile			0.07			0.02	num be.	0.0	10000ge	807.1	b	2.135			
Cement			0.43			0.42	banel	3.2	tons	38.2		0.610			
Linne			0.01			0.02	tons	7.0	dan	1.3		4.074			
Washbasin or Cup			0.21			0.14	num be.	0.1	dozen	3.0	b	3.417			
letals and metalproducts		0.32			0.51								1.28	1.10	1.1
Pig iron			0.08			0.19	tons	36.0	tons	64.5		2.038			
Tinplate			0.04			0.03	kg	0.3	tons	351.7		1.317			
A lum inum			0.04			0.06	kg	1.5	tons	1653.5		1.247			
Cast-iron pipe			0.27			0.26	kg	0.1	pounds	0.0		1.334			
Nail			0.57			0.45	barre l	7.1	pounds	0.1	а	0.937			
Wage	0.50			0.50									0.65	0.65	0.6
Sawer's wage b)			0.50			0.50	daily		# daily	0.9		0.733			
Carpenter's wage b)			0.50			0.50	daily	0.6	# daily	1.0		0.577			

Preliminary, not for citation

	Chinese weight			Japa	Japanese weight			Chinese		Japanese			Chinese price level		
	Ι	Π	III	Ι	Π	III	Unit	Price Yuan	Unit	Price S Yen		hinese/ apanese	Japanese weight	Chinese weight	Fisher average
交通 公益													0.48707	0.56898	0.52643
Public utilitis		0.10			0.35								1.31	0.00	1.31
Electricity a)			1.00			1.00	<i>1</i> kwh	0.2	1kwh	0.1		1.314			
Transportation and communic	ations	0.90			0.65								0.75	0.35	0.51
Rickshaw pullers'wag	ge b)		0.50			0.50	daily	0.5	daily	2.7		0.202			
Average railroad fare	sperp	assenge	0.50			0.50	perpas	0.0	per passe	0.0		1.297			

3.000

商業サービス											0.615	0.5789746	0.5965598
金融·不動產	0.29		0.25								0.38	0.38	0.38
		1.00		1.00	1.00	1 100m	1.7	1 100m (.	5.1	0.384			
商業サービス	0.63		0.41								0.77	0.77	0.77
All tradable goods of				1.00									
Services	0.08		0.34								0.60	0.43	0.51
Teachers' wage b)		0.25			0.25	month	12.5	m on th ly	65.9	0.190			
Haicut <i>f)</i>		0.25			0.25	once	0.3	once	0.4	0.750			
Movie h)		0.25			0.25	once	0.2	once	0.3	0.667			
New spapers h)		0.25			0.25	1 set	0.0	1 set	0.1	0.800			